Package: tseriesChaos 0.1-13.1
tseriesChaos: Analysis of Nonlinear Time Series
Routines for the analysis of nonlinear time series. This work is largely inspired by the TISEAN project, by Rainer Hegger, Holger Kantz and Thomas Schreiber: <http://www.mpipks-dresden.mpg.de/~tisean/>.
Authors:
tseriesChaos_0.1-13.1.tar.gz
tseriesChaos_0.1-13.1.zip(r-4.5)tseriesChaos_0.1-13.1.zip(r-4.4)tseriesChaos_0.1-13.1.zip(r-4.3)
tseriesChaos_0.1-13.1.tgz(r-4.4-x86_64)tseriesChaos_0.1-13.1.tgz(r-4.4-arm64)tseriesChaos_0.1-13.1.tgz(r-4.3-x86_64)tseriesChaos_0.1-13.1.tgz(r-4.3-arm64)
tseriesChaos_0.1-13.1.tar.gz(r-4.5-noble)tseriesChaos_0.1-13.1.tar.gz(r-4.4-noble)
tseriesChaos_0.1-13.1.tgz(r-4.4-emscripten)tseriesChaos_0.1-13.1.tgz(r-4.3-emscripten)
tseriesChaos.pdf |tseriesChaos.html✨
tseriesChaos/json (API)
# Install 'tseriesChaos' in R: |
install.packages('tseriesChaos', repos = c('https://antoniofabio.r-universe.dev', 'https://cloud.r-project.org')) |
- lorenz.ts - Lorenz simulated time series, without noise
- rossler.ts - Roessler simulated time series, without noise
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 6 years agofrom:fc60db785c. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 13 2024 |
R-4.5-win-x86_64 | OK | Nov 13 2024 |
R-4.5-linux-x86_64 | OK | Nov 13 2024 |
R-4.4-win-x86_64 | OK | Nov 13 2024 |
R-4.4-mac-x86_64 | OK | Nov 13 2024 |
R-4.4-mac-aarch64 | OK | Nov 13 2024 |
R-4.3-win-x86_64 | OK | Nov 13 2024 |
R-4.3-mac-x86_64 | OK | Nov 13 2024 |
R-4.3-mac-aarch64 | OK | Nov 13 2024 |
Exports:C2d2duffing.systembeddfalse.nearestlorenz.systlyaplyap_kmutualplot.amiplot.d2plot.false.nearestprint.d2print.false.nearestrecurrrossler.systsim.contstplot
Dependencies:deSolve
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Sample correlation integral | C2 |
Sample correlation integral (at multiple length scales) | d2 |
Duffing oscillator | duffing.syst |
Embedding of a time series | embedd |
Method of false nearest neighbours | false.nearest |
Lorenz system | lorenz.syst |
Lorenz simulated time series, without noise | lorenz.ts |
Tools to evaluate the maximal Lyapunov exponent of a dynamic system | lyap lyap_k |
Average Mutual Information | mutual |
Plotting average mutual information index | plot.ami |
Plotting sample correlation integrals | plot.d2 |
Plotting false nearest neighbours results | plot.false.nearest |
Printing sample correlation integrals | print.d2 |
Printing false nearest neighbours results | print.false.nearest |
Recurrence plot | recurr |
Roessler system of equations | rossler.syst |
Roessler simulated time series, without noise | rossler.ts |
Simulates a continuous dynamic system | sim.cont |
Space-time separation plot | stplot |